OPUS Products

Dr. Mark Schenewerk Mark.Schenewerk@noaa.gov 816-994-3009

Outline

- What is OPUS?
 - Processing Applications
 - Publishing Option
- Coming Attractions
 - IGS08 (improved CORS coordinates)
 - OPUS-Net(improved processing strategy)
 - OPUS-Projects (multiple stations and occupations)

What is OPUS?

The Online Positioning User Service, OPUS, is a growing set of web-based applications offering access to the tools and resources provided by the NGS. OPUS currently offers:

- Processing applications for individual data files.
- A publishing option for OPUS results.

OPUS can be reached through a link on the NGS home page, http://geodesy.noaa.gov

Or directly using the URL http://geodesy.noaa.gov/OPUS/

OPUS data processing applications.

These applications provide completely automated, high accuracy data processing for individual marks. Beautiful in their simplicity, you need only provide:

- Your email address.
- 15 minutes to 48 hours of GPS L1 + L2 data.
- The antenna type.
- The offset to the Antenna Reference Point (ARP).

Then click a button and you'll receive an email containing coordinates for your mark accurate to a few centimeters.

	NDRA	OPUS: Online I	Positioning User Service
			National Geodetic Survey
	NGS Home About NGS	Data & Imagery Tools Surveys Science & Educ	cation Search
		Upload your data file. Tie your GPS observation to the National Spatial F What is OPUS? FAQs	Reference System.
		mark.schenewerk@noaa.gov *Email address - your solution will be sent here.	
/		CR\My Documents\Downloads\corv059f.09o * Data file of dual-frequency GPS observations. <mark>s</mark> a	Browse Browse Browse Browse Browse
	Upload	ASH700936C_M D/M element,	milled chokerings, -radome 💌
1	About OPUS Published Solutions	Antenna type - choosing wrong may degrade you	r accuracy.
	Contact OPUS	1.521 meters above your mark. Antenna height of your antenna's reference point.	
		Options to customize your solution.	
		Upload to Rapid-Static Upload to Static for data > 15 min. < 2 hrs.]

Here is an example of the data upload page.

2011-06-20

Why are there two upload buttons?

The strategies needed to successfully fix phase ambiguities to their integer values are different for short and long data sets. Thus two buttons:

- Rapid-static (15 min to 2 hrs).
- Static (2 hrs to 48 hrs).

Although the integer fixing strategies are different, the processing quality is not. Both use:

- The best available numerical models.
- Up-to-date CORS data, coordinates and velocities. (Some data are available within 1 hr.)
- IGS Satellite Ephemerides. (Predicted available immediately.)
- Ion-free, integer-fixed phase.

Why different strategies to fix integers?

As the GNSS signals travel from the satellite to your antenna, a variety of effects come into play. Most have well determined corrections but several do not. Until we determine these unknown corrections, we can't accurately compute the integers or coordinates. Most significant of these are:

- The charged atmosphere. (ionosphere)
- The neutral atmosphere. (troposphere)

How do you get those corrections?

OPUS Rapid-Static handles data spans shorter than 2 hrs. It uses additional data from the CORS surrounding your mark to compute charged and neutral atmosphere corrections at the CORS. It then interpolates those values to your mark's location. Using the interpolated corrections, the integers and the coordinates can be confidently determined.

And for longer data spans?

If you can afford to occupy a mark for a longer time, the change in satellite position relative to your antenna eliminates all but the appropriate set of corrections. This is the strategy of OPUS Static: given 2 hrs of data or more, the atmosphere corrections, the integers and the antenna coordinates can be confidently determined in the processing.

How good can I do with OPUS?

OPUS typically yields accuracies of:

- horizontal: 1 2 cm.
- vertical: 2-4 cm.

However, there is no guarantee that this stated accuracy will result from any given data set. Confirming the quality of the OPUS solution is your responsibility. That's the "price" for the simplicity of this processing.

A little more specific rule of thumb.

Several studies of **OPUS** accuracy versus occupation duration are available. Their results are the basis of the "rule of thumb" shown here. The shaded areas indicate typical accuracies

Eckl et al., 2001, "Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration", J. of Geod. 75, 633-640. Soler et al., 2009, "Accuracy of Rapid Static Online Positioning User Service (OPUS-RS) Revisited, 13 (2), 119-132.

for OPUS Rapid–Static, but these can't really be summarized simply. For an estimate tailored to your circumstances, visit http://geodesy.noaa.gov/OPUSI/Plots/Gmap/OPUSRS_sigmap.shtml

An OPUS Static example.

Here is the basic report from OPUS Static for an sample 2 hr data set.

This is a known mark, so I know that this result is in good agreement with the accepted coordinates (2.1 cm horizontally and 1.6 cm vertically), but more generally, how can you know if this is a good solution?

USER: RINEX FILE:	mark.schenewerk@noaa.g corv059f.09o	ov	DATE: TIME:	March 31, 2 19:43:42 UT	010 C
SOFTWARE: EPHEMERIS: NAV FILE: ANT NAME: ARP HEIGHT:	page5 0909.08 master4 igs15206.eph [precise] brdc0590.09n ASH700936C_M NONE 1.521	0.pl 081023	3 START: STOP: OBS USED: # FIXED AMB: OVERALL RMS:	2009/02/28 2009/02/28 5984 / 61 31 / 0.009(m)	05:00:00 06:59:00 81 : 97% 31 : 100%
REF FRAME:	NAD_83(CORS96)(EPOCH:2	002.0000)	IT:	RF00 (EPOCH:	2009.1596)
х:	-2498422.603(m)	0.011(m)	-2498	423.344(m)	0.011(m)
Y:	-3802821.159(m)	0.007(m)	-3802	819.941(m)	0.007(m)
Ζ:	4454736.661(m)	0.021(m)	4454	736.734(m)	0.021(m)
LAT:	44 35 7.91060	0.016(m)	44 35	7.92618	0.016(m)
E LON:	236 41 43.48046	0.013(m)	236 41 4	3.42207	0.013(m)
W LON:	123 18 16.51954	0.013(m)	123 18 1	6.57793	0.013(m)
EL HGT:	106.011(m)	0.014(m)		105.627(m)	0.014(m)
ORTHO HGT:	128.542(m)	0.020(m) [1	NAVD88 (Compu	ted using GE	OID09)]
	UTM COORDI	NATES ST	TATE PLANE CO	ORDINATES	
	UTM (Zone	10)	SPC (3601 (OR N)	
Northing (Y) [meters] 4936954.	909	105971.55	9	
Easting (X)	[meters] 475821.	304	2277335.36	7	
Convergence	[degrees] -0.21381	419	-1.9889751	3	
Point Scale	0.99960	719	0.9999460	3	
Combined Fa	ctor 0.99959	057	0.9999294	1	
US NATIONAL	GRID DESIGNATOR: 10TDQ	7582136954	(NAD 83)		
	BASE	STATIONS (JSED		
PID D	ESIGNATION		LATITUDE	LONGITUDE DI	STANCE (m)
DH4503 P376	EOLARESVR_OR2004 CORS .	ARP N4	445628.313 W1	230608.100	42648.2
DE6258 MCSO	MARION CNTY COOP CORS 2	ARP N4	445825.701 W1	225720.639	51226.8
DG5352 STAY	STAYTON COOP CORS ARP	N4	444950.530 W1:	224915.036	47030.9

Minimal OPUS Static quality check.

The suggested OPUS Static solution quality measures are:

OBS USED> 90%# FIXED AMB> 50%OVERALL RMS< 3 cmpeak-to-peak< 5 cm

In this example, we have a 😃.

	-							
USER: RINEX FILE:	<pre>mark.schenewerk@noaa. corv059f.09o</pre>	gov	DATE TIME	: March 31, : 19:43:42 U	2010 TC			
SOFTWARE: EPHEMERIS: NAV FILE:	page5 0909.08 master igs15206.eph [precise brdc0590.09n	40.pl 081	023 STARI STOL	: 2009/02/28 : 2009/02/28 : 5984 / 61	05:00:00 06:50:00 181 : 97%			
ANT NAME: ARP HEIGHT:	ASH700936C_M NONE 1.521		# FIXED AMB OVERALL RMS	: 31 / : 0.009(m)	31 : 100%			
REF FRAME:	NAD_83(CORS96)(EPOCH:	2002.0000) I	TRF00 (EPOCH	:2009.1596)			
х:	-2498422.603(m)	0.011(m)	-249	8423.344(m)	0.011(m)			
Υ:	-3802821.159(m)	0.007(m)	-380	2819.941(m)	0.007(m)			
Ζ:	4454736.661(m)	0.021(m)	445	64736.734(m)	0.021(m)			
LAT: E LON:	44 35 7.91060 236 41 43.48046	0.016(m) 0.013(m)	44 35 236 41	7.92618 43.42207	0.016(m) 0.013(m)			
W LON:	123 18 16.51954	0.013(m)	123 18	16.57793	0.013(m)			
EL HGT: ORTHO HGT:	106.011(m) 128.542(m)	0.014(m) 0.020(m)	[NAVD88 (Comp	105.627(m) outed using G	EOID09)]			
	UTM COORD UTM (Zon	INATES e 10)	STATE PLANE COORDINATES SPC (3601 OR N)					
Northing (Y)	[meters] 4936954	.909	105971.5	59				
Easting (X)	[meters] 475821	.304	2277335.3	367				
Convergence	[degrees] -0.2138	1419	-1.988975	513				
Combined Fac	tor 0.9995	0719 9057	0.999946	003 041				
US NATIONAL	GRID DESIGNATOR: 10TD	Q75821369	54(NAD 83)					
	BAS	E STATION	S USED					
PID DI	ESIGNATION		LATITUDE	LONGITUDE D	ISTANCE (m)			
DH4503 P376	EOLARESVR_OR2004 CORS	ARP	N445628.313 W	1230608.100	42648.2			
DE6258 MCSO	MARION CNTY COOP CORS	ARP	N445825.701 W	1225720.639	51226.8			
DG5352 STAY	STAYTON COOP CORS ARP		N444950.530 W	1224915.036	47030.9			

http://geodesy.noaa.gov/OPUS/about.jsp#accuracy

An OPUS Rapid-static example.

Here is the basic **OPUS** Rapid-static report for the same data.

Here again, I now this result agrees with the known coordinates (2.4 cm horizontally and 0.2 cm vertically), but how can you know if this is a *good* solution?

USER: mark.schenewerk@noaa.gov RINEX FILE: corv059f.09o

DATE: April 01, 2010 TIME: 16:17:51 UTC

44 35 7.92619

236 41 43.42230

123 18 16.57770

105.602(m)

SOFTWARE:	rsgps 1.35 RS11.prl 1	L.57 START:	2009/02/28	05:00:00
EPHEMERIS:	igs15206.eph [precise]	STOP:	2009/02/28	06:59:30
NAV FILE:	brdc0590.09n	OBS USED:	5652 / 111	69 : 51
ANT NAME:	ASH700936C_M	QUALITY IND.	48.23/108.	85
ARP HEIGHT:	1.521	NORMALIZED RMS:	0.28	0
REF FRAME:	NAD_83(CORS96)(EPOCH:2	2002.0000) IT	RF00 (EPOCH:	2009.15959
X:	-2498422.589(m)	0.015(m) -2498	423.330(m)	0.015(m)
Y:	-3802821.147(m)	0.012(m) -3802	819.929(m)	0.012(m)
Z:	4454736.644(m)	0.021(m) 4454	736.717(m)	0.021(m)

0.004(m) LAT: 44 35 7.91061 236 41 43.48069 0.011(m) E LON: W LON: 123 18 16.51931 0.011(m) EL HGT: 105.986(m) 0.026(m)ORTHO HGT: 128.517(m) 0.030(m) [NAVD88 (Computed using GEOID09)]

		UTM COORDINATES	STATE PLANE COORDINATES
		UTM (Zone 10)	SPC (3601 OR N)
Northing (Y)	[meters]	4936954.909	105971.559
lasting (X)	[meters]	475821.309	2277335.372
Convergence	[degrees]	-0.21381414	-1.98897509
Point Scale		0.99960719	0.99994603
Combined Fac	tor	0.99959058	0.99992942

US NATIONAL GRID DESIGNATOR: 10TDQ7582136954 (NAD 83)

	BASI	E STATIONS	S USED		
PID	DESIGNATION		LATITUDE	LONGITUDE	DISTANCE(m)
DH4503	P376 EOLARESVR OR2004 CORS	ARP	N445628.313	W1230608.100	42648.2
DG5352	STAY STAYTON COOP CORS ARP		N444950.530	W1224915.036	47030.9
DE6258	MCSO MARION CNTY COOP CORS	ARP	N445825.701	W1225720.639	51226.8
DI7529	P367 NEWPRTAIR_OR2007 CORS	ARP	N443506.870	W1240341.598	60113.5

0.004(m)

0.011(m)

0.011(m)

0.026(m)

Minimal OPUS Rapid-static quality check.

The suggested OPUS Rapid-static solution quality measures are: OBS USED > 50% QUALITY IND. > 3 NORM. RMS ≈ 1 Uncertainties < 5 cm

In this case, I only give this a $\stackrel{\circ}{=}$.

RIN	USER: NEX FILE:	mark.schenewerk@noaa.gov corv059f.09o	DATE: TIME:	April 01, 2010 16:17:51 UTC
5	SOFTWARE:	rsgps 1.35 RS11.prl 1.57	START:	2009/02/28 05:00:00
EI N ARI	PHEMERIS: NAV FILE: ANT NAME: P HEIGHT:	igs15206.eph [precise] brdc0590.09n ASH700936C_M 1.521	OBS USED: QUALITY IND. NORMALIZED RMS:	5652 / 11169 : 51% 48.23/108.85 0.280
RE	EF FRAME:	NAD_83(CORS96)(EPOCH:2002.0	000) ITI	RF00 (EPOCH:2009.15959)
	х:	-2498422.589(m) 0.015	(m) -2498-	423.330(m) 0.015(m)
	Y:	-3802821.147(m) 0.012	(m) -38028	819.929(m) 0.012(m)
	Ζ:	4454736.644(m) 0.021	(m) 4454	736.717(m) 0.021(m)
	LAT:	44 35 7.91061 0.004	(m) 44 35 (m) 236 41 4	7.92619 0.004 (m)
	W LON:	123 18 16 51931 0.011	(m) 123 18 10	6 57770 0.011 (m)
	EL HGT:	105.986 (m) 0.026	(m) 120 10 1	105.602 (m) $0.026 (m)$
OF	RTHO HGT:	128.517(m) 0.030	(m) [NAVD88 (Comput	ted using GEOID09)]
		UTM COORDINATES	STATE PLANE COO	ORDINATES
Nor	rthing (Y) [meters] 4936954,909	105971.55	9
Eas	sting (X)	[meters] 475821.309	2277335.372	2
Cor	nvergence	[degrees] -0.21381414	-1.9889750	9
Poi	int Scale	0.99960719	0.99994603	3
Con	nbined Fa	ctor 0.99959058	0.99992942	2
US	NATIONAL	GRID DESIGNATOR: 10TDQ75821	36954(NAD 83)	
		BACE CTAT	TONS USED	
PII	D D:	ESIGNATION	LATITUDE 1	LONGITUDE DISTANCE(m)
DH4	4503 P376	EOLARESVR_OR2004 CORS ARP	N445628.313 W12	230608.100 42648.2
DGS	5352 STAY	STAYTON COOP CORS ARP	N444950.530 W12	224915.036 47030.9
DE	0258 MCSO	MARION CNTY COOP CORS ARP	N445825.701 W12	225720.639 51226.8
	1529 2501	NEWFRIAIK_ORZOU/ CORS ARP	1443300.070 WI.	240341.390 00113.3
h	ttp://a	eodesy noaa dov	//OPUS/abo	out.isp#accuracy
	<u>-</u>			

The OPUS publishing option.

OPUS provides a means to share your results with others. This is completely voluntary and there are some rules (http:// geodesy.noaa.gov/OPUS/about.jsp#publishing).

Publishing through OPUS is separate from the more conventional method of publishing to the IDB. Eventually, these will be fully reconciled.

Publish Your OPUS Solutions

Publishing helps maintain local ties to the National Spatial Reference System, and, by linking observations, strengthens the models used to translate between modern and legacy mapping products.

Step 1. Follow These Requirements

Field Procedures

- GPS data file ≥ 4 hour duration
- quality mark setting
- experienced observer
- fixed height tripod recommended
- brace tripod legs with sandbags or chain
- verify antenna height and plumb
- see HARN guidelines

High-Quality OPUS Solution

- ≥ 70% observations used
- ≥ 70% ambiguities fixed
- ≤ 3 cm RMS
- ≤ 4 cm peak-to-peaks, lat. & lon.
- ≤ 8 cm peak-to-peak, el. hgt.
- properly identify antenna type
- precise or rapid orbits (avail, next day)

Mark Attributes

- photos of mark & equipment
- details (name, type, stability, etc.)
- description to aid mark recovery
- preview mark description form & help file

How do I publish my results?

Go to the OPUS upload page and fill out the form as you normally would, but before clicking the upload button, click the Options button causing the options to appear.

Select "Yes, publish" for the "Publish my solution" option.

Now click Upload.

C∖\Documents * Data file of dua	and Settings\mark.schenewei Bro al-frequency GPS observations. <mark>samp</mark> l	owse	Sample Solutions
ASH700936C	_M D/Melement, mi	lled chokerings,	-radome 💌
1.521 meta Antenna height	ers above your mark. of your antenna's reference point.		
Solution Solution	Add details to your report	standard solution	•
Base stations	Type in 4-char site IDs, or select from map, any CORS you wish to explicitly include or exclude from your solution Sample	Use: Exclude:	Look up site IDs
State plane coordinates	Overrule your native SPCS zone	let OPUS choose	•
Geoid Model	Customize your orthometric height model	GEOID09	•
Contribute to a project	Enter the project identifier provided by your project manager.		
My profile	Customize OPUS defaults for future solutions		•
Publish my solution	Share your solutions	Yes, publish	•
Upload to Ra	pid-Static Upload to Static		

The mark description forms.

The processing will proceed normally, but in this case you'll visit two more forms where you'll describe the mark from which the data were collected.

You can abort at any time and will still receive your solution.

	OPUS: On	line Positior	ning U	ser Sei	vice	
			Na	itional Geo	detic Survey	/
Step 3 of 4: Des	scribe new mark. 750.060					
1. uploa	d√	2. identify	3.	describe		4. publish
			yo	our mark		
* Stamping * Designation * Type * Setting * Description	H179 H179 D = Disk 31 = Pavement (st Specific setting (op) (describe the mark, Take interstat mi on SR 442, on U.S. 51, tr railroad, Bucl near this turn the road and p	DD = Survey disk reet sidewalk, curb, a tional): witness ties, etc., to en- ter 155 to State turn north on U urn east on Buck cles Ln take a s n. Approximately cailroad.	(other agen etc.) able future re Road 442 .s. 51 les Ln harp rig 50 ft we	ecoveries. Ma east exi After 1.5 Just past ht. Mark est, betw	x characters= t. 1 mi the is een	500) <mark>273</mark>
* Close-up photo * Horizon photo	C\Documents and	l Settings\mark.scher I Settings\mark.scher	newerk.CR newerk.CR	Browse Browse	3	

QC your submission and you're done.

Again, you'll always receive your OPUS solution in an email.

If you've completed the mark description forms, you'll receive a separate email giving you a chance to review your description. You can modify the description or even abort at this point, but normally you'll confirm the submission.

There are automated and manual reviews to insure submissions meet the rules so, occasionally, a follow-up email is sent. Normally however, your submission should be available for others to use in a few hours.

Take a look some published results.

If you are interested in publishing, I encourage you to review the on-line documentation and explore some of the previously published results. Published solutions are available through a link on the OPUS upload page.

SURVEY DATASHEET (Version 1.0)

NOAA's National Geodetic Survey Positioning America for the Future

www.ngs.noaa.gov

CORS COORDINATES

The world, it is a changin'...

... with apologies to Bob Dylan.

Physically: Every place is in motion. Some places move predictably, some chaotically and some dynamically respond to their environment.

Technically: Our knowledge of these and other phenomena is improving. As a result, old hardware is improved and new hardware built. Likewise, old software is improved and new software is developed.

Logistically: Even excluding these changes, our tools age: GNSS satellites and sites come and go.

Enough philosophy already!

The last comprehensive CORS adjustment was completed more than a decade ago. In this digital age, that makes it old tech. Nevertheless, the coordinates were pretty good.

However, in many cases, the velocities were poor. Add a growing number of new CORS with modelled rather than measured velocities and an increasingly untenable circumstance was developing.

Welcome IGS08 and NAD 83(2011)!

The International GNSS Service (IGS) has completed a multiyear solution of all suitable GNSS sites. Known as the IGS08 reference frame, this became operational in April 2011. Rebischung, Schmid and Ray, 2011, "[IGSMAIL-6354] Upcoming switch to IGS08/ igs08.atx", http://igscb.jpl.nasa.gov/pipermail/igsmail/2011/006346.html.

In turn, the NGS has built upon its contribution to the IGS08 by completing an adjustment of all U.S. CORS. Although, strictly speaking, not part of the IGS08 reference frame, these NGS coordinates are consistent with and will be labelled IGS08. This adjustment was then rotated to match the NAD 83 system. This last product will be designated the NAD 83(2011). CORS and OPUS will make the IGS08 and NAD 83(2011) operational in July 2011. (http://beta.ngs.noaa.gov/myear/)

Why all the hubbub?

- This is the most consistent (internally and with other space geodesy techniques) adjustment to date.
- Data from 1997 2010.5 were included.
- All recognized discontinuities were accounted for.
- Absolute antenna models were used.
- State of the art geophysical models were used.
- The reference epoch for IGS08 coordinates is 2005.0 and 2010.0 for the NAD 83(2011).
- The plan is to have this reference frame evolve via ongoing processing and periodic readjustments.

Put this all together and you have better coordinates, velocities and uncertainties now and into the future.

What's this mean for me?

- Truthfully, probably some needless anxiety.
- Better coordinates, velocities and uncertainties.
 In particular, better vertical velocities.
- Improved results from OPUS.
 - Less concern when combining old with new results.

NOAA's National Geodetic Survey Positioning America for the Future

www.ngs.noaa.gov

OPUS-NET

What is OPUS-Net?

OPUS-Net *looks like* the other OPUS processing applications. The four "beautifully simple" questions and options remain. The difference is an enhanced processing strategy:

- Includes ocean-tide loading model.
- Uses a combination of near and distant CORS.
- Performs a network solution which includes your data.

OPUS-Net is being tested now. A BETA version should be available before the end of 2011.

What's ocean-tide loading?

As the tide swells and ebbs, the changing weight of water pressing on the Earth's crust causes it to deform in sympathy with the tide. This effect can be as large as several centimeters.

Why use near and distant CORS?

Although it may seem counter-intuitive, including distant CORS enables better neutral atmosphere corrections. As we've discussed, having these makes everything else better.

More CORS minimizes the effects of missing data from and changes at the CORS used in your solution.

Furthermore, this allows OPUS-Net to emphasize "quality" as well as "quantity." The best understood CORS in North America (and the world) will always be used in the processing.

And the network solution?

OPUS Static processes each baseline independently from the others. The coordinates you receive in your OPUS solution report are the mean and peak-to-peak scatter computed from these independent solutions.

Network solutions combine all data in a common solution. This "let the data speak" meaning the strengths and weaknesses inherent in the data are distributed more realistically. The results are more robust coordinates and more realistic uncertainties.

Do we really need another OPUS flavor?

Probably yes.

Weston and Ray have found that OPUS-Net reduces the scatter in the north and east components with no degradation in the height component. Moreover, the resulting coordinates agree better with other sources such as the IGS combinations.

Weston and Ray, "Test of the Use of Regional Networks for OPUS Processing", 2010, EGU General Assembly 2010, Geophysical Research Abstracts.

NOAA's National Geodetic Survey Positioning America for the Future

www.ngs.noaa.gov

OPUS-PROJECTS

What Is OPUS-Projects?

OPUS-Projects gives users web-based access to simple visualization, management and processing tools for multiple sites and multiple occupations. These tools include:

- The advantages of data uploading through OPUS.
- Data visualization and management aids.
- Enhanced data processing using the PAGES suite.
- Solution visualization aids.

Although still in BETA development, OPUS-Projects is available now. The next training workshop is in San Diego in July with more workshops to come.

What exactly does OPUS-Projects do?

Once a project is created, field crews can upload their data to the project using **OPUS.** The field crews will still receive their OPUS reports, but so will the project manager helping him or her to better oversee the project while the data are taken.

Tell me more.

Furthermore, the project manager can immediately begin working with the data: review reports, edit mark descriptions, add CORS data and process "sessions", i.e. collections of project data that overlap in time.

Data Availability

2006-10-02T20:00:00 GPST to 2006-10-03T01:20:00 GPST in 10 minute cells

7			_					_		_			_						_				_		_								_	
		~~								2006-10-02											2006-10-03													
	MARNS		20						2	1					2	2				23					0	0		01						
	2126	\circ	o	0	0	0	0	0	0	0	0	0	0	0	0	0	7	8	8	7	7	7	7	7	7	6	6	6	6	6	7	7	6	
	2137	\circ	0	0	7	7	8	7	7	8	7	7	8	8	7	8	8	8	8	8	7	8	8	7	7	7	6	6	6	7	7	7	7	6
	2139	0	o	7	7	7	7	8	7	7	7	8	8	9	9	9	A	9	8	8	7	8	7	7	7	7	6	6	6	6	7	6	6	7
	gait	\circ	o	0	7	7	8	8	7	8	7	8	8	9	9	9	9	9	8	8	7	8	8	7	7	6	6	6	6	7	7	7	6	6

What about publishing?

Once the sessions are processed, a network adjustment can be performed giving a selfconsistent solution for all marks and all occupations. If desired, this result can be published to OPUS.

MARK 2126 Plotted Solution Results From All Sources

Shaded (orange) areas in the plots are outside the project's preferences. 🖬 are network solutions. 🔶 are session solutions. 🛎 are OPUS solutions.

NETWORK SOLUTION	EAST (cm)	NORTH (cm)				
	2.1.0.1 (0.1.1)					
network-final	0.0 ±0.0	0.0 ±0.1				
SESSION SOLUTION	EAST (cm)	NORTH (cm)				
2006-274-A	-0.1 ±0.0	0.0 ±0.1				
2006-275-A	0.2 ±0.0	-0.1 ±0.1				
2006-275-B	0.1 ±0.1	-0.4 ±0.2				
2006-276-A	0.0 ±0.0	0.4 ±0.2				
OPUS SOLUTION	EAST (cm)	NORTH (cm)				
2126274w.06o	1.0 ±2.4	0.8 ±1.5				
2126275g.06o	0.3 ±0.9	0.6 ±1.7				
2126275w.06o	-0.4 ±1.2	-1.7 ±3.2				
2126276g.06o	0.9 ±2.4	1.8 ±3.6				
The (0, 0) point represents W089:4	48:34.33165 by N3	30:58:00.79986.				

NETWORK SOLUTION	EPOCH	UP (cm)
network-final	2006-275T23:59:45 GPST	0.0 ±0.1
◆ SESSION SOLUTION	EPOCH	UP (cm)
2006-274-A	2006-275T00:08:44 GPST	-1.1 ±0.2
2006-275-A	2006-275T07:59:02 GPST	-0.1 ±0.2
2006-275-B	2006-275T22:58:02 GPST	0.9 ±0.3
2006-276-A	2006-276T11:27:49 GPST	0.7 ±0.2
OPUS SOLUTION	EPOCH	UP (cm)
2126274w.06o	2006-275T00:07:55 GPST	-4.8 ±10.4
2126275g.06o	2006-275T08:00:57 GPST	-0.2 ±2.9
2126275w.06o	2006-275T23:47:02 GPST	3.6 ±9.1
2126276g.06o	2006-276T08:32:38 GPST	0.4 ±0.5
The UP 0 point	represents 14.03368 m.	

NETWORK SOLUTION	EPOCH	EAST (cm)
network-final	2006-275T23:59:45 GPST	0.0 ±0.0
♦ SESSION SOLUTION	EPOCH	EAST (cm)
2006-274-A	2006-275T00:08:44 GPST	-0.1 ±0.0
2006-275-A	2006-275T07:59:02 GPST	0.2 ±0.0

Ē

Do we really need another OPUS flavor?

The practical answer is probably yes. The NGS and other groups have a history of project's whose specifications can't be entirely supported by OPUS.

The academic answer is probably yes. As good as OPUS does, and that is <u>very</u> good, sacrificing simplicity for flexibility can improve results.

OPUS Products

Dr. Mark Schenewerk Mark.Schenewerk@noaa.gov 816-994-3009