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ABSTRACT 
 
In this paper, the potential of long-range kinematic GPS positioning with a multiple reference station 
(MRS) network for airborne applications is discussed.  A novel method of creating Virtual Reference 
Stations (VRS) is proposed for post-processed airborne GPS kinematic applications, which is called the 
modified semi-kinematic VRS method (MS-VRS).  The purpose of the VRS is to generate data from real 
GPS observations made by the MRS network, resembling that of a non-existing (virtual) reference 
station situated close to the project area, so that the commonly used methods for short-range kinematic 
GPS data processing can be used to determine the position of the aircraft.  During the initial phase, the 
VRS of the MS-VRS method refers to a fixed position according to the aircraft’s initial approximate 
position, and the corrections are applied according to the aircraft’s trajectory.  The MS-VRS method 
differs from the conventional VRS method and semi-kinematic VRS method (S-VRS) in that when the 
aircraft’s current approximate position is more than 10 km from the initial VRS position, a new VRS is 
created.  The MS-VRS data can be generated in RINEX format, so that it can be processed using any 
kinematic GPS post-processing software.  Using a simulated kinematic test with static data, the MS-VRS 
method showed a 12.1 to 47.6 percent improvement in the three coordinate components with respect to 
the conventional single reference station (SRS) approach.  Tests and analysis with real airborne GPS 
data are presented in some detail using a MRS network and flight test data in Norway.  The results 
indicate that centimetre-level accuracy can be achieved based on the proposed MS-VRS method, which 
is superior to the S-VRS method, with improvements of 11.4 to 47.4 percent in terms of standard 
deviations of the coordinate domain.  
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INTRODUCTION 
 
In recent years, there has been increasing demand for airborne GPS positioning, which 
provides precise position information for many engineering applications and scientific 
investigations, such as photogrammetric aerotriangulation without ground control 
[1],[14], airborne remote sensing [1],[2],[19], airborne laser systems for precise 
topographic mapping [7], geophysical and oceanographic exploration [9],[25].  
Generally, it is agreed that many of the atmospheric and satellite-related errors cancel 
when processing the reference and rover station data, so that conventional kinematic  
GPS positioning can provide the ability to determine the trajectory of an aircraft with 
respect to a fixed base station to a precision of several centimetres for a rover-base 
separation less than 10 km [7], [8],[10],[13].  
    However, for long-range airborne GPS positioning, the distance between the aircraft 
and its reference station can easily reach more than 10 km.  As such, the assumption of 
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error cancellation degenerates and the performance of the system degrades.  Moreover, 
decorrelated positioning errors, such as ionospheric and tropospheric effects, limit the 
ability for centimetre-level kinematic positioning [2],[4],[7],[9],[26]. 
    More recently, multiple reference station (MRS) networks are being installed in 
many countries worldwide to extend the operational limits of high-precision GPS, and 
different approaches to take advantage of the availability of MRS have been developed 
e.g., [3],[6],[11],[17],[18],[20],[21],[24].  Airborne GPS positioning with the 
corrections from a MRS network also showed a significant accuracy improvement 
when compared to differential GPS (DGPS) processing using individual stations 
[7],[9],[25].  Kjorsvik et al. [14] show that sub-decimetre positioning of airborne 
sensors can be achieved by using a MRS network.  A number of researchers showed 
similar results when operating in a MRS network e.g., [15], [19], [22].  
    An efficient method of utilizing corrections to the network users for real-time or 
post-processing kinematic positioning is the Virtual Reference Station (VRS) concept.  
During the past few years, the use of the VRS concept has been proposed by many 
research groups as a more feasible approach for relaying network correction 
information to the users e.g., [12],[14], [18], [20-23].  
    This study focuses on investigating the post-processed VRS method for airborne 
GPS kinematic applications based on a MRS network.  This paper begins with a brief 
discussion of the relevant methodology.  This includes a review of the VRS method 
and a modified semi-kinematic VRS method (MS-VRS) proposed herein.  Some 
results of simulated kinematic positioning and real airborne kinematic GPS data in 
Norway are then analysed in detail.  Finally, conclusions and proposals for future work 
are presented. 
 

METHODOLOGY 
 
    This section is intended to an overview the VRS data generation approach, along 
with a proposed MS-VRS method.  A more detailed description of the VRS approach 
is given in [12],[20],[22]. 
 
Overview of VRS data generation 
    The main idea behind the VRS concept is to reduce or eliminate the residual double-
differenced errors for long-range baselines processing, and combine the observations 
of several reference stations in such a way that an optimum set of observations of the 
VRS is obtained.  Hence, the commonly used methods for short-range baseline 
kinematic data processing can be used to determine the position of a long-range rover 
in real-time or post-processing modes [12],[14],[20],[22],[23]. 
    In order to create VRS from the observations of the MRS network of real reference 
stations, several processing steps have to be performed.  The first step is to resolve the 
double-differenced carrier-phase ambiguities among stations in the network epoch-by-
epoch.  After the double-differenced ambiguities associated with the reference stations 
have been fixed to their correct values, the correction coefficients for the rover can be 
generated from the residuals in L1 and L2 carrier-phase measurements on a satellite-
by-satellite, epoch-by-epoch basis.  Then, the corrections are computed for the rover 
according to its approximate position.  
    In the next step, VRS data for user receivers are generated.  In order to generate 
VRS data as though there was a reference station at the user’s location, the carrier-
phase and code pseudo-range observations from a master reference station have to be 
displaced geometrically and improved by applying the corrections of the network 
according to user’s approximate position, i.e. the VRS position.  The rover’s 



G.R. HU, O. OVSTEDAL, W.E. FEATHERSTONE, N. CASTLEDEN, C.J. EARLS & D.A. ABBEY 

 85  

approximate position can be obtained from absolute (single point) C/A-code-
positioning.  The VRS data is generated in RINEX format, so that it can be processed 
using any post-processing software. 
 

MS-VRS method 

    The VRS concept was initially developed for static users or users moving through 
fairly small areas [6],[12],[20].  In such conditions, one approximate user position (i.e., 
one VRS) is sufficient for the process.  For airborne GPS positioning, however, the 
rover is moving over longer distances.  Wanninger [22] suggests a semi-kinematic 
VRS method (S-VRS) to extend the concept of static VRS to that of kinematic 
positioning.  As illustrated in Figure 1, the area correction parameters (FKP – a 
translation from German) are applied according to the rover’s trajectory, but this 
method fixes the VRS position.  Due to the nature of the airborne GPS task, the typical 
lengths of baselines being processed may reach many hundred kilometres.  It is 
therefore necessary to frequently update the approximate position and the VRS should 
be also moved along the rover’s trajectory.  As such, the S-VRS method is not 
applicable to large-area kinematic positioning.  
 

 
 
 
 
 
 

Fig. 1. Generation of the S-VRS data (adapted from [22]) 
 
    Therefore, a MS-VRS is proposed in this paper for long-range airborne post-mission 
GPS kinematic applications.  As shown in Figure 2, during the initial phase, the VRS 
refers to a fixed position according to the rover’s initial approximate position, and the 
corrections are applied according to the rover's trajectory.  Unlike the conventional 
VRS and the S-VRS methods, when the rover’s current approximate position is more 
than 10 km from the initial VRS position, a new VRS is created.  For post-processing, 
the MS-VRS data can be generated in RINEX format.  Another modification to the S-
VRS method is that the FKP (area correction parameters) are replaced by the network 
correction coefficients.  
 

 
Fig. 2. Generation of the MS-VRS data 
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TEST RESULTS AND ANALYSIS 

 
Simulated kinematic positioning accuracy 
    A simulation experiment has been conducted to test the performance of the VRS 
method by comparing the results with those obtained using a conventional single 
reference station (SRS) approach.  Five static GPS stations in Norway form a network 
(Figure 3).  The stations were equipped with dual-frequency Trimble MS750 receivers 
and TRM41249.0 antennas.  The stations HONE, ARNE and SAND are taken as 
reference stations.  The stations OSLS and SORH are “rover” stations, where the data 
from them is treated as if they were kinematic data.  The resulting kinematic positions 
are compared, epoch-by-epoch, to the centimetre-level known positions of these sites.  
 

 
 
 
 
 
 
 
 
 

Fig. 3. Norway simulation network 
 

    In this test, the time span from 08:25 to 09:25 (GPS time) on May 8th 2002, with a 
sampling rate of 1 Hz is selected.  The VRS data for the “rover” are generated in 
RINEX format according to the approximate position of the “rover” from the 
simulated network, using the post-mission VRS software developed at Curtin 
University of Technology.  The UNB3 models [5] with Niell mapping functions [16] 
are used in the software to compute the a priori troposphere delay.  Final precise orbits 
from the IGS service were adopted, and the satellite elevation cut-off angle is set at 10 
degrees. 
    The VRS data were generated for the OSLS station (75 km “rover” distance relative 
to the master station ARNE), and the SORH station (68 km “rover” distance relative to 
the master station SAND), respectively.  For the purpose of the comparison, solutions 
were also obtained by SRS kinematic positioning relative to the respective master 
station using the raw data.  The kinematic processing results using the VRS and SRS 
methods are shown in Figures 4 and 5.  The coordinate components’ error values 
(external accuracy) are computed by differencing the estimated position from the 
known position in the EUREF89 datum (UTM North Zone 32).  
 

Table 1. Summary statistics of kinematic position accuracy by using the SRS and the VRS methods (unit: metres) 
 

STD Mean Max Min Test  
Point 

Coord. 
Comp. SRS VRS Imp(%) SRS VRS SRS VRS SRS VRS 
North 0.036 0.026 27.8 -0.139 -0.018 -0.093 0.027 -0.182 -0.119 
East 0.021 0.011 47.6 0.137 0.004 0.173 0.028 0.092 -0.02 

 
 

SORH 
Height 0.047 0.038 19.1 -0.157 -0.035 -0.086 0.056 -0.224 -0.151 
North 0.037 0.022 40.5 -0.146 -0.017 0.178 0.042 0.125 -0.116 
East 0.026 0.014 46.1 -0.126 0.012 -0.076 0.016 -0.176 -0.046 

 
 

OSLS 
Height 0.033 0.029 12.1 0.192 -0.041 0.258 0.03 0.125 -0.105 
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Fig. 4. SORH station kinematic position accuracy by using the SRS and the VRS methods 
 
 
 

 
 

Fig. 5. OSLS station kinematic position accuracy by using the SRS and the VRS methods 
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   The statistics of kinematic position accuracy for the two “rovers” are listed in Table 
1.  The results illustrate that the standard deviations are at the few centimetres level for 
the horizontal and ellipsoidal height components, as well as the average errors for the 
VRS solutions.  The VRS method shows an improved accuracy in all three 
components of the position domain, as compared to the SRS solution.  As shown in 
Table 1, the improvement in the solutions clearly presents the benefits of the VRS 
method.  
 
Norway Airborne GPS data test  
    The objective of this test was to verify how much improvement the MS-VRS 
method achieved relative to the S-VRS method using real airborne data.  A one-hour 
dual-frequency airborne dataset from 08:25 to 09:25 on the same day as the simulation 
test in the previous subsection was selected from a test flight in Norway, with a data 
collection rate of 1 Hz (for further details about the whole flight period, see [14]).  This 
test used three Norwegian reference stations (SAND, SORH and OE23) to form a 
network with the sampling rate of 1 Hz.  The distance between reference stations 
varied from 60-70 km.  Figure 6 shows the test network and the trajectory of the flight 
during the selected test period.  The VRS data were generated using the S-VRS and the 
MS-VRS methods, respectively.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Flight trajectory and the reference stations network of the selected test data 
 
 

 
 
 
 
 
 

 
Fig. 7. The height and terrain profile of the test flight (from [14]) 

 
    The reference trajectory was confirmed at an accuracy of several centimetres by 
comparison with different software and independently determined positions from an 
aerial triangulation (for further details, see [14]).  The height and terrain profile of the 
flight period is plotted in Figure 7.  The estimated positions from both the S-VRS and 
the MS-VRS methods were compared with the reference trajectory.  Figures 8a and 8b 
show the position differences.  Table 2 summarises the results of the comparisons 
conducted during the selected test period.   
    It can be seen from Table 2 that, in comparison with the solution obtained by the S-
VRS method, the standard deviations of north, east and height components are reduced 
from 0.059 to 0.031m (47.4%), 0.035 to 0.031m (11.4%) and 0.091 to 0.078m (14.3%), 
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respectively, by using the MS-VRS method.  The standard deviation in the height 
component is a factor of 2 to 3 times worse than in the horizontal component.  Since 
the accuracy of GPS positioning is comparatively worse in the height component, it is 
necessary to pay attention to the accuracy of the height determination. An optimal 
model for the a priori troposphere delay relating to the height should be made in future. 

 

 
Fig. 8a. Norway airborne GPS kinematic position accuracy by using the S-VRS method 

 
 

 
Fig. 8b. Norway airborne GPS kinematic position accuracy by using the MS-VRS method 

 
 

Table 2. Statistics of the accuracy by using S-VRS and the MS-VRS methods for Norway airborne GPS test 
 

STD Mean Max Min Coord. 
Comp. S-VRS MS-

VRS 
Imp(%) S-VRS MS-

VRS 
S-VRS MS-

VRS 
S- 

VRS 
MS-
VRS 

North 0.059 0.031 47.4 -0.022 -0.005 0.066 0.068 -0.288 -0.076 
East 0.035 0.031 11.4 0.019 0.010 0.151 0.097 -0.043 -0.107 

Height 0.091 0.078 14.3 -0.056 -0.035 0.111 0.157 -0.375 -0.219 
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SUMMARY AND CONCLUSIONS 

 
    For some airborne GPS positioning, the distance between the aircraft and its 
reference station can easily reach several hundred kilometres, and as the distance 
increases, more decorrelated positioning errors (e.g., ionospheric and tropospheric 
effects) limit the ability for centimetre-level kinematic positioning.  Fortunately, the 
use of a multiple reference station (MRS) network can extend the operational limits for 
long-range kinematic positioning.  
    The post-processing VRS concept based on MRS networks is discussed in this paper.  
A modified semi-kinematic VRS (MS-VRS) technique is used so that the existing 
standardized data formats and standard commercial kinematic software are capable of 
working in network mode.  Results and analysis using simulation tests show an 
improvement of 12.1 to 47.6 percent in the three coordinate components by using the 
VRS method, as compared to the SRS method.  Tests with real airborne GPS data 
demonstrate that 3D-position accuracy of a few centimetres can be achieved with the 
MS-VRS method.  The results obtained in this study reveal the improvements brought 
about by the application of the MS-VRS method as opposed to the S-VRS method.  
    However, there is a constant bias error in the vertical component.  These errors may 
be caused by the modelling errors for the tropospheric delay because of the height 
difference between the base station network and the aircraft.  It is suggested to model 
troposphere more carefully in future to see if further improvement can be made. 
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