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Foreword 

I n earlier days when only transits and tapes were used for traversing, surveyors had 
guidelines for detecting blunders in their surveys, utilizing closures in a traverse. Modern 
equipment has changed accuracies obtainable to surveyors; therefore, new statistical 
quantities should be used to detect possible gross errors in measurements. Some of thes_e 
statistics are discussed and simple formul as are g iven for their computations. It is also 
shown that a closure is not to be u ed as a measure of a::curacy, but only for detection of 
possible blunders in traversing. 

Statistics for Land Surveyors 
Most textbooks on surveying have a sec­

tion on the theory of measurements and er­
rors- for example, Bouchard and Moffitt, 
1965 ; Brown and Eldridge, 1969; Brinker, 
1969-therefore, only some specific points 
will be discussed in this paper. 

The first question which might be asked 
is why anyone uses statistics and, mor spe­
cifically, why land surv yors should know 
anything about statistics. Before dealing 
with either of these questions, the word "sta­
tistics" should be defined. According to the 
Kendall and Buckland, 1971 dictionary, the 
word statistics is the "Numerical data relat­
ing to an aggregate of individuals; the sci­
ence of evaluating, analyzing a nd interpret­
ing such data." A surveyor uses statistics 
when he wants to find out how good his 
measurements and results are or will be. 
Statistics can be used also in the process of 
making decisions about actions to be taken, 
and as some surveyors do already, statistics 
can be used to convey results more precisely 
to a thir l party. 

Every surveyor is famili a r with the con­
cept that by measuring a quantity several 
times, some feeling emerges as to the repeat­
ability or precision and, it is hoped, the 
accuracy of the measurements and mean 
value. The following examples demon­
strate how to translate this feeling into num­
bers through the use of statistics. For ex­
ample, the results of measuring a line 50 

times a re given in T able 1. The average of 
50 measurements, x, is 1462. 100 fee t. The 
sample standard deviation of one m easure­
ment is computed with the following for­
mula: 

n 1 
where x = average value, x-i = ith observation 
and n = number of observations. The dif­
ference of x - x,i is called a residual. This 
means that the sample standard deviation 
of one observation is the positive value of 
the square root of the quotient of the square 
sum of all re iduals divided by a number 
which is one less than the number of ob­
servations. The sample standard deviation 
for a measurement give·n in Table 1 is: 
; = 0.033 foot. T he corresponding sample 
tandard deviation of the mean value is ob­

tained by using the foll owing formula: 

<1 
<1:i; =-= 

Vn. 
The standard deviation of the m an value 

of the 50 observations given in Table 1, is 

o:ii-= 0.005 foot . 
, v hat do these numbers mean? It has 

been common practice that observed values 
having residuals larger than three times the 
standard deviation are rejected as blunders. 
When this idea is related to the normal dis­
tribution of residuals and when the true 
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standard deviation is known, it can be 
shown that 99. 73% of the residuals will be 
less than three times the standard error. 
What is the difference between true stan­
dard deviation and a sample standard de­
viation? It can be said, at this point, that 
the sample standard deviation is a progres­
sively better estimate of the true standard 
deviation when it is computed by using 
more and more observations. When the n 
( number of observations) approaches in­
finity, tpe sample value approaches the true 
value. 

This statement is also correct for the 
mean value. This is demonstrated in Table 
2 where the sample means and the sample 
standard deviations for various combina­
tions of the values given in Table 1 have 
been computed. The second column indi­
cates which observations have been included 
in the computations. For example, the first 
row gives the results where only the first and 
second observations were used. On the 
second row, observations one to three have 
been used and so on. Under column x, 
sample means are given for each case and 
corresponding sample standard deviation of 
one observation is given under heading u, 
and the sample standard error of the mean 
is given under u;;. All values under column 
x are estimates of the same length of the 
line and under column ;; all values are esti­

mates of the same theoretical value-stan­
dard deviation of one observation. It can 
be seen that values in the same column 
differ considerably. 

Here is a set of numbers representing the 
length of the line; what can be said about 
them? With experience it would be con­
cluded that when the number of observa­
tions increases, then the mean is a better 
estimate for the quantity itself. In reality, 
this does not necessarily mean that estimates 
derived from more observations are closer 
to true value than those estimates derived 
from fewer observations. However, if a 
confidence interval is set up for derived 
values, the interval is found to be also a 
function of the number of observations. A 
confidence interval of a quantity is usually 
very broad when the quantity has been de­
rived from a small number of observations 
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Table 1. 
Observed Values x, in feet Residual, :; - x, in feet 

1 1462.121 -0.021 
2 1462.165 -0.065 
3 1462.071 0.029 
4 1462.095 0.005 
5 1462.097 0.003 

6 1462.088 0.012 
7 1462.163 -0.063 
8 1462.045 0.055 
9 1462.108 - 0.008 

10 1462.091 0.009 

11 1462.052 0.048 
12 1462.056 0.044 
13 1462.1 45 - 0.045 
14 1462.085 0.015 
15 1462.088 0.012 

16 1462.057 0.043 
17 1462.081 0.019 
18 1462.094 0.006 
19 1462.144 -0.044 
20 1462.085 0.015 

21 1462.115 -0.015 · 
22 1462.113 - 0.013 
23 1462.071 0.029 
24 1462.078 0.022 
25 1462.126 -0.026 

26 1462.164 -0.064 
27 1462.088 0.01 2 
28 1462.101 - 0.001 
29 1462.084 0.016 
30 1462.164 -0.064 

31 1462.128 -0.028 
32 1462.121 -0.021 
33 1462.087 0 .013 
34 1462.121 - 0.021 
35 1462.096 0.004 

36 1462 .106 -0.006 
37 1462. 130 -0.030 
38 1462.107 -0.007 
39 1462.05 I 0.049 
40 1462 .118 -0.018 

41 1462.096 0.004 
42 1462.122 -0.022 
43 1462.034 0.066 
44 1462.117 - 0.017 
45 1462 .021 0.079 

46 1462.080 0.020 
47 1462.074 0.026 
48 1462.140 - 0.040 
49 1462.097 0.003 
50 1462.100 -0.000 

Average x = 1462.100 feet. &; = 0.005 foot. 

as compared to the interval related to a 
large number of observations. 
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Table 2. 

Set# Obs. incl. x a e1; 

1 1-2 1462.143 0.0312 0.0221 
2 1-3 1462.119 0.0471 0.0272 
3 1-4 1462.113 0.0403 0.0202 
4 1-5 1462.110 0.0356 0.0159 
5 1-6 1462.106 0.0331 0.0135 
6 1-7 1462.114 0.0369 0.0139 
7 1-8 1462.106 0.0421 0.0149 
8 1- 10 1462.104 0.0375 0.0119 
9 1- 15 1462.098 0.0372 0.0096 

JO 1- 20 1462.097 0.0353 0.0079 
11 l - 30 1462.101 0.0346 0.0063 
12 1-40 1462.103 0.0321 0.0051 
13 1-50 1462.100 0.0333 0.0047 

When the normal distribution is assumed, 
the confidence interval of the mean is de­
fined as 

" " 
P (- _ a tn-i. • < < - + a tn-1, • ) _ 1 X nl µ X nl - - a 

where 
-; .,. sample mean 
a• sample standard error 
n "' number of observations 

t n-1, • = Student's distribution for n - l degree of 
freedom and a significance level 

µ, = true or theoretical value. 

Usually, a is taken as 5% and t is ob­
tained from tables published in textbooks or 
handbooks on statistics ( for example, Ham­
ilton, 1964). The values corresponding to 
a= 0.05 are given in Table 3 where DF 
means degree of freedom, in this case, n - 1. 
Using the above formula and a= 0.05 the 
confidence interval for the first mean value 
in Table 2 is computed as follows: 

0.0312·12.706 
P(1462.143- "1/Z <µ,< 1462.143 

+ 0.0312_:22.706) =P(l46 1.863 
\/2 

< µ, < 1462.423) = 0.95 

Strictly speaking, this interval means the 
probability that either 1461.863 wiJI exceed 
µ. or 1462.423 will be less than µ. is 5%. 
Engineers usually use a less accurate­
but more understandable-statement: The 
probability that the true value, µ., is between 
1461.863 and 1462.423 is 95%. Confidence 

VoL. 66, No. J 

P ( x, < µ, < x; ) = 0.95 P(a, <a< e11) = 0.95 

1461.863 < µ, < 1462.423 0.014 <a< 0.987 
1462.002 1462.236 0.024 0.296 
1462.049 1462 .177 0.028 0.150 
1462.066 1462.154 0.021 0.102 
1462 .071 1462. 141 0.021 0.081 
1462.080 1462.148 0.023 0.081 
1462.071 1462.141 0.028 0.086 
1462.077 1462.131 0.026 0.068 
14-62.077 1462.119 0.027 0.059 
1462.081 1462.114 0.027 0.052 
1462.088 1462.114 0.028 0.046 
1462.093 1462.113 0.026 0.041 
1462.091 1462.110 0.028 0.041 

intervals for the mean values are given in 
column 6 of Table 2. These samples indi­
cate how fast the interval decreases when 
the number of observations increases, for 
example, from 2 to 5. If a very good esti­
mate of the true standard error is available, 
such as er = 0.033, then u can be replaced 
with this value and it can be assumed that 
DF = oo when using Table 3. In that case, 
tn. - 1, a. would be 1.96 for a• 0.05, and the 
corresponding confidence interval for the 
first mean: 

0.033 • 1.96 
P ( 1462 .143 - "1/2 < µ, < 1462.143 

0.033 • 1.96 
+ v'2 ) = P(l462.097 

< µ, < 1462.189) = 0.95 

For the fourth set, with observations from 
1 to 5, follow the same pro edure to get: 

P(l462.110 - 0.0
3
~;·

96 < µ, < 1462.110 

0.033· 1.96 
+ VS ) = P( 1462.081 

< µ. < 1462.139) = 0.95 

These examples show that a much narrower 
confidence interval results when the stan~ 
dard deviation is derived from a larger sam­
ple or from earlier experience, rather than 
the sample standard deviation derived from 
a small number of observations. A confi­
dence interval for the variance can be com­
puted, using the following formula: 

9 
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p ( DP~' < cr' < ~F~• ) = l _ o. 
't..' /JP . o/ 0 X. 01"(1 - G/ 2) 

The alues for x2 ar gi n for a./2 = 0.025 
and ( 1- a./2) - 0.975 in Table 3 for tab­
lishing an 0.95 probability con.fid nee in­
terval. Corresponding intervals are given 
for the standard deviations in Table 2. 

There is another point which d erves at­
tention. One residual, for example, as given 
in Ta l 1 d es not at any time indicate 
how accurat ly the measurement of the 
quantity correspondinrr to the residual has 
b n made. residual is related to the 
sample m n whi h changes its alue when 
a numb r of ob ervations is changed. This 
means that the value of residuals also 
·changes ev n thou o-h the numerical value of 
the ori inal m<'a ur m nt do s not chanrre. 
For amp! , by mputing th sample 
t;r1 a1,1 and residuals of the first seven meas-
• urem.ents, the data in Table 4 result. Com­
_paripg the corr ponding values in Tables 
l an.d 4, it can be se n that the values of 
th measurem nt ha c not hanged but 
that the residuals hav This demonstrates 
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beyond doubt that one residual is not to be 
u ed as an indication of accuracy or preci­
sion. How ver, if the standard deviation is 
known, it can be ascertained whether one 
residual is larger than it should be with a 
certain probability. A confidence int rval 
gives an id a of the limits with a certain 
probability, ut according to Mandel 
( 1964) , it should not be used for rejection 
when the amp! mean and sample standard 
errors are used. A better way of handling 
the rejection is through tolerance limits; 
however, that subj ct is outside the scope 
of this pap r. 

It may b of interest to persons involved 
in practical work to discuss limits which 
have been established for closures in differ­
ent classes of ntrol work. The fulfillment 
of th e requir ments is important in field­
work, but at th ame tim , any blunders in 
obs rvations n ed to be detected. When 
the same in.strum nt is used r peatedly, the 
surveyor develop. a feeling for the size of 
closure which will be obtained under cer­
tain circumstances. For example, if he ran 
a clo ed traverse he would know about what 

Table 3. 

tudcnt's t x.' - Distribution 
DF Distribution a = 0.05 

a = 0.05 ( I - a/2 ) = 0.975 a./2 = 0.025 

1 12 .706 0.00 5.02 
2 4.303 0.05 7.38 
3 3.183 0.22 9.35 
4· 2.776 0.48 11.14 
5 2.57) 0.83 12.83 

6 2.447 1.24 14.45 
7 2.365 1.69 16 .01 
8 2.306 2.18 17.53 
9 2.262 2.70 19.02 

10 2.228 3.25 20.48 

11 2.20 1 3.82 21.92 
12 2.179 4.40 23.34 
I 3 2.160 5.01 24.74 
14 2.145 5.63 26. 12 
15 2.132 6.27 27.49 

20 2.086 9.59 34.17 
25 2.060 13.12 40.65 
30 2.042 16.79 46.98 
40 2.021 24.43 59.34 
60 2.000 40.48 83.30 

120 1.980 
00 1.960 
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1462.12 1 
1462 .165 
1462.071 
1462.095 
1462.098 
1462.088 
1462.163 

Table 4. 

-0.007 
-0.051 
+0.043 
+0.019 
+ 0.016 
+ 0.026 
- 0.049 

x=1462.111 a= 0.0369 

size angle closure to expect, providing he 
had used the same instrument many times. 
He would also be able to judge when the 
size of the closure would be too large. Usu­
ally the number of angles measured and the 
length of the traverse legs would be taken 
into consideration by the surveyor. With a 
change of instruments, new numbers must 
be established. Now the question is: How 
are these numbers established for each case, 
using info rmation based on the experience 
of someone else? If a closed traverse is run, 
for example, the sum of the interior angles, 
a:s, should be 

n 
~ ni- (n - 2) x 180° = 0; 

i = 1 

when all observed interior angles are 
summed up and (n-2 ) 180° substracted, 
the result is not zero, but a closure: 

n • 
~ nbi - (n - 2 ) x 180° = w ; 

i = 1 

The expected value for the angle closure is 
zero as it is for the residuals given in T able 
1. As stated earlier, a residual is not a 
measure of accuracy; likewise, an angle clo­
sure is not a measure of accuracy. As con­
fidence limits are established for a measured 
length, limits for the angle closure can also 
be established. In order to do this, a vari­
ance equal to the quare of standard error 
for the closure must be obtained. Variance 
for the closure can be computed from the 
followino- form ula: 

provided that angle measurements are inde­
pendent of each other and ua1 is the stan­
dard error of ith angle. aa,: s are related to: 
What instrument was used, how long the 

Vol. 66, No. I 

sides of the angle were, what observation 
methods were used, and who was observing, 
etc. If there are good estimates for the 
variance of each angle, a good estimate for 
the variance of the closure will result from 
the above formula. A 95% confidence in­
terval for the closure is 

P( -1.96•ow < w < + 1.96·0'w) = 0.95, 

and 99. 73% confidence interval, which cor­
responds with the so-called 3u interval is 

P( - 3 ·010 < w < + 3·oio) = 0.9973. 

As an example, assume that each angle 
has been measured with the same accuracy: 

Oa1 = O'a 2 = O'a 3 = ... = o.1 = ... O'an. = O'.<, 

then 

where n = number of angles. As a numer­
ical example, further assume that a closed 
traverse has 16 interior angles and each 
angle has been measured with standard er­
ror <TA= 2". The corresponding confidence 
intervals are 

P( -1.96·2"· V16 < w < + l.96·2" · V16) 
= P( - 15".7 < w < + 15".7) = 0.95, 

and 

P c - 3 • 2" vK < w < + 3 ·2" vm 
= P( - 24" < w + 24") = 0.9973 . 

If the closure actually computed is outside 
the confidence interval, say 24·" in this case, 
it is evident that there is a blunder in the 
observations of angles, provided, of course, 
that the estimates for ,, A: s have been good. 
On the other hand, it cannot 'be said that 
a small closure indicates very acc.:irate angle 
measu rements because only one estimate 
was available. For example, assuming a 
normal distribution of errors and a case 
where the sample traverse was measured 
] 00 times, the xpected outcome for the 
size of the closures is given in Table 5. 

From T able 5, it can be concluded that 
47 times out of 100 the closure will be ex­
pected between - 5" and + 5". 

T aking the same traverse and computing 
expected closures when u A. is 4" instead of 
2" results in the data given in Table 6. 

Under these circumstances, a closure be­
tween - 5" and + 5" can be expected in 24.5 
times out of 100. It is obvious that if the 

JJ 
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< -25" 
- 25" to - 15" 
-15" to - 5" 
- 5" to + 5" 
+ 5" to + 15" 
+ 15N tO + 25" 

> +25" 

Si::e of the Closur• 

< -25" 
-25" to -15" 
-15" to· - 5" 
- 5" to + 5" 
+ 5" to + 15" 
+15" to +25" 

> + 25" 

Table 5. 

Table 6. 

Numb1r of Times 

0.1 
3.0 

23.6 
46.8 
23.6 
3.0 
0.1 

5.9 
11.5 
20.3 
24.5 
20.3 
11.5 
5.9 

closure were between - 5" and +5", it would 
not be known which one of the above cases 
it would be or if it wer ei ther. Therefore, 
it can be con luded that one closure does 
not give any m asure of work accuracy but 
a closure can be used to determine whether 
any blunders are present. 

By running a closed traverse, a so-called 
error of closure can be computed as fol­
lows: 
error in closuriJ = \I ( l: Lat )'+(~ Dep)' 

= V (Af.at)2 + (ADep)2, 

Often the ratio between the error in closure 
and the total length of the traverse is com­
puted. Som times, erroneously, this ratio 
is believed to represent a measure of accu­
ra y. From arlier discussions it can be 
seen easily that one error in closure is not a 
m asure of a uracy, but can be used for 
detecting possible blunders. 

The expect d value for A Lat and A Dep 
is zero, but for (6Lat) 2+(t.Dep) 2 it is 
something cJsc. TheoreticaJly, it is easy to 
propagate th errors throu h a traverse and 
derive the quantities which can be used to 
compute expected closures at the end point 
of the traver e. The formulas to follow can 
be u ed for an open traverse where the start­
ing point is numbered 1 and considered 

SURVEYING AND MAPP! G, M arch 1973 

errorle s, and the last point n. For simpli­
fication, let North coordinate = N, East co­
ordinate = E, Latitude • L, and Departure • 
D. The formulas are: 

(1 t ..._. I, I ♦ l O 9 + n - l(D ) 2 
IDo = ~ '', 4+ 1 

i = l S1 , 1 +1 

n 
~ 

i = I 

where 

t 
C1,v" = variance in N at point n 

• C1•n = variance E at point n 
<1NnBn = covariance between N and E at point n 

L,. , + 1 = Latitude from point i to point i + 1 .. 
N1 +1- N, 

D ,. , +, = Departure from point i to point i + 1 = 
E, +1 - E1 

s,. , + 1 = distance between point i and point 
i + 1. 

N, = North coordinate at point i 
N,. = North coordinate at point n 
E, = East coordinate at point i 
En = East coordinate at point n 

2 
a,., , +,=variance for distance from point i to 

point i + 1 
I 

6., = variance of angle at point i 
p = conversion factor depending on units 

of a. ; if a .. in seconds, p" = 206264".81 ; 
likewise, if a. in minutes, p' = 3437'. 75. 

In a dosed traverse, the above computa­
tion formulas n be used by changing the 
subindex n to 1. After computation of 

C1N1
, a,! and a,v, • . 

the elements of an error ellip at the point 
an be computed by the following formulas: 

w = V (aN• - a,f)~ + 4C1N,•• 

2t sin 2t, 2<1.v. tt 
tan ,=--= 11 1 cos 2,. (J,y - <1 11 

A' "' ½(<1N'+a111+ lwl) 
11' = ½(as'+ G.111 

- ]wl} 

Sunwyiug aud Lnud lnfor111atio11 ScimrP 
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where A and B are semi-major and semi­
minor axes of the error ellipse, respectively, 
and t0 is azimuth of the semi-major axis 
clockwise from the North. The proper 
quadrangle for 2t0 is selected by taking the 
quadrangle where the sine has the same sign 
as uN,B and the cosine has the same sign as 

aJJ-a.•. 

• In the above formulas w is an auxiliary 
quantity. The propagation of errors and 
computations of error ellipses can be done 
when 

and approximate N and E for each point 
are known. For this purpose, s,,,+ 1 can be 
computed from approximate values of N: s 
and E:s. A simple closed traverse can dem­
onstrate the computation. Approximate co­
ordinates for the points are given in Table 

N 

6 
4,000 

7 

3,000 

4 

2,000 

3 

1,000 2 
16 

7 and a diagram of the traverse is given in 
Figure 1. 

The first task is an estimation of 

a.,, ,+i :s, and era, :.r. 

If it is assumed that the standard error in 
the centering is u0 ft. and in observing one 
direction, ue, the following formulas result: 

I 1 
a.,. Hl = (0.0 1 + 100000 • s,. ' +i)•+ a.• 

a:,,.2-a,1 +p'•a.'( 1 
1
+ 1 ) 

(s,,,-1) (s,,1+1)• 

p = 3437'.75 = 206264".81 

is a conv rsion factor. 
The e formulas are approximate formulas 

which take into consideration the length of 
the sides of angles in evaluating 0-11 :s. The 
formulas will differ depending on the in-

9 

8 

15 

o ____________ _._ _____ _,, ___ __,.E 
0 1,000 2,000 3,000 

Figure 1. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Table 7. 

N 
in feet 

290 
900 

1700 
2500 
3250 
4060 
3750 
3700 
3960 
3220 
2500 
1780 
980 
190 
700 
710 

E 
in feel 

690 
200 
300 
180 
275 
320 

1100 
1900 
2690 
2680 
3050 
2690 
2910 
2820 
2150 
1380 

struments and techniques used. Formulas 
more or less rigorous than those above 
might be used. The quality of the end re­
sults depends on how well <1: s have been 
determined. 

Using <10 = 0.005 foot and <Tt = 2" for the 
closed traverse, starting from point one, the 
results are as follows: 

ow•= 181.07 (") 1 

'1N
1 = 0.012013 ft.• 

Os1 = 0.024431 ft.1 

'1NB = - 0.006776 ft.• 

These results were obtained very easily 
through a small program prepared for a 
Hewlett-Packard 9810A calculator. Using 
the same calculator, results for the error el­
lipse were obtained as follo .. vs : 

w 0.018381 

to = 113°.75 
A 0.1656 ft. 

B 0.0950 ft. 

The corresponding :;tandard empse 1s 

given in Figure 2. Assuming that 

o .. :s and as':s 

were very good estimates of true variances, 
then it can be expected that a point cor­
responding to the coordinates ( which were 
obtained by cornputing through the traverse 
without balancino- the angles ) will fall in­
side the standard ellipse with a .373 prob­
ability or 37 ,3% of the repeated cases. 

/ 4 
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Using factors, c, given in Table 8 as a 
multiplier of A and B, error ellipses can be 
constructed for various probabilities. Some 
of them are given in Figure 2. A 50% 
probability error ellipse is easiest to under­
stand, where there is a 50-50 chance that 
the point will fall inside the error ellipse. 
For example, if the point does not fall inside 
a 99 % error ellipse, it is then quite certain 
that a blunder exists somewhere along the 
line. 

It must be emphasized that the factors 
given in Table 8 apply only when <18 :s and 
<1a:s are knovvn. If a scalar (the so-called 
variance of unit weight) derived from an 
adjustment is used , a different set of multi­
pliers related to an F-distribution (Rich­
ardus, 1966) must be utilized. 

Table 8. 

Values of c for Po/o probability ellipse 
p C 

25 
50 
75 
90 
95 
99 

0.7585 
1.177 
1.665 
2.146 
2.448 
3.035 

When the angles are not balanced before 
adjustment, the size of the closure is a func­
tion of a starting point, i.e., different clo­
sures will develop, depending from which 
point the computations start. Similarly, clif­
f erent values result for 

depending on which point is selected as a 
starting point. For example, if the start is 
from point 11 in the traverse given in Fig­
ure 1 and the same input data is used as in 
the previous computations, the results are: 

<Jw
2 = 181.074 (") 8 

'1N
1 = 0.017805 f~ 

a,?! 0.010461 ft' 
<JN, B = - 0.002029 ft' 

To have the smallest error ellipse and 
also the smallest expected closure without 
balancing angles, computation is made by 
using as a starting point one which has co­
ordinates closest to the mean value of all the 
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standard 
ellipse 

N 

.4 

690 
Figure 2. 

coordinates in the traverse. In that case, 
errors in the angles have the least effect as 
compared to their effects in other cases. 
The variance of an an le closure and the 
an le closure itself are, in fact, invariant. 

If it is found that the point falls inside 
th rror llipse, it does not guarantee that 
blunders do not exist, because blunders may 
ha e balanced each other; however, those 
cases are very rare. If blunders are found 
to exist, then how would the surveyor pro­
ceed to locate them? Pinpointing blunders 
is unlikely where several exist: but. if there 
is only one, the following steps are sug ested 
for locating it : 

1) It has been learned above that con­
fidence limits for the angle closure can 
be used for ch eking whether or not blun­
ders exist in an~le m asurements. 

2 If there is no indication of blunders 
in the an Jes and the point still falls out­
side the 99% or 95% error ellipse, the 

Vol. 66, No . 1 

surveyor may then suspect a blunder in 
the distance measurements. 

How can a blunder be found? Many sur­
veyors alr ady know the trick of h eking 
the direction of a closure and whether any 
sides are in this direction. The following 
method might also be useful especially with 
a hi h-speed computer. Compute coordi­
nates commencing with point 1 to the Jast 
point n - 1-i.e. one before clo. incr. For 
example, in Figure 1 start at point 1 com­
pute clockwise until point 16 is reached· 
take computed coordinat s of 1 and 16 and 
compute: 

,._ _ tan-1 E, - E,. t 4 E,. - E 1n ..... , u. u- N - an 
l - N i& N1, - N10 

_1 E2 - E, -,1. E, - E,. 
~. 1 , ie= tan N N tan , - , N, - N,e 

S11, 1• \l(N,-N,..)'+ (E1-Eie)• 

a) If angles a1, 16 , 1~ and a2 . 1, 16 are ap­
proximately within the confidence limits 

15 
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for the ob crved angles, there are no blun­
ders in the angl s. If the computed side 
is not equal within a reasonable tolerance 
(use error ellipse as a scale), the blunder 
is in that side. 

b) If one angle does not check but the 
other an le and ide checks reasonably, 
th blund r is in the angle which did not 
che k. 

c) If distance checks but angles do 
not, eith r both angles may b in error, 
or the error may be somewhere else. 

d) If both angles differ from the mea­
sured angles and the length of the side does 
not h ck a blunder is usually somewhere 
else. 

Start over at the next p int until the 
blunder i found. 

As stat d, th formulas which wer 0 wen 
ab ve for computation of 

ow•, cr.v• cr,l and C1N, a 

can also be used for an open traverse, where 
the n-p int is the last point for determina­
tion of the expected errors in the coordi­
nates and azimuth or bearing. An error el­
lipse can also b drawn at that point. What 
does an rror ellipse-for xample, a 99% 
error ellipse-m an at that point? sually, 
even though it i not quite correct it could 
be stated with 99% probability that the cor­
rect oordinat s for the point are in ide of 
that rror ellipse. 

It is inter ting to examine the distribu­
tion of the siz of relative closur s obtained 
when the expect d closures are known. It 
is som what difficult to give th e numbers 
in usual cases, but a demonstration for the 
ase in which 

and 

IJN , E:: 0 

may be useful. In that case, the error el­
lipse is a circle. 

If the 

. \l ai,~+ a,? 1 
ratio = s = 24300 

the umulativ distribution of ratios given 
in column 2 of Table 9 would be obtained. 
By compari on, the cumulative distribution 
for another traverse having 

16 
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. \l aN• + orl 1 
ratio -= l:s = 12150 

is given in column 3 of the same table. 

Table 9. 
Cu mu lative Distribution when <111' = o,,l and 

<JNB = 0. 

Ratio CLOSURE Expected % when a~ + ol 
l:8 1:, 

Equal or Smaller 1/ 24300 1/12150 

1/100000 5.8 1.5 
1/90000 7.0 1.8 
1/80000 8.8 2.3 
1/70000 11.4 3.0 
1/60000 15.2 4.0 
1/50000 21.1 5.7 
1/40000 30.9 8.8 
1/30000 48.2 15.2 
1/20000 77 .2 30.9 
1/15000 92.8 48.2 
1/10000 99.7 77 .2 
1/5000 100.0 99.7 

This demon trat again that from a sin­
gle closure one cannot judge the accuracy 
of a survey. For example, if 

\I cr.v1 + a,l 
~ s 

is one part in 24300, a ratio 

V L2 + Ll.D• 
l:s 

one part in 50,000 or small r results 21.1 % 
of the time, but only 5.7% of the time when 

\I <1N' + aa• 
1:s 

is one part in 12,150. If 

v~L•+~n• 
1:s 

were one part in 50,000 or less, the surveyor 
would not know which one of the situations 
h had, or perhaps it would be neither. 
This ratio i adequate roughly for checking 
for blund r in a survey, but that i all. It 
can al o b u ed with some confid nee to 
et up the limits for acceptable work. To 
·ummarize th results from able 9 on 
could ay that in the fir t case ( 1/24 300) 
25% of the time a relative closure is equal 
to 1/45,400 or mailer ; 50% of the time, 
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1/29,200 or smaller; and 75% of the time 
1/20,700 or smaller. The corresponding 
numbers for the second case are 1/22,700, 
1/14,600 and 1/10,300. For cases where 

C1N ~ <1• and C1N11 ~ 0, 
similar analyses can be made, but would 
necessitate the computing of semi-major 
axis, A, and semi-minor axis, B, of error el­
lipses and the use of somewhat more compli­
cated procedures. 

Now let us discuss another problem: a 
closed traverse such as the one in Figure 3. 
When points 2 to 7 are connected with one 
measurement, what size of closure can be 
expected? There is not a simple formula 
for checking this, but both closed traverses 
can be checked by using the technique em­
ployed in the previous example of a closed 
traverse. In fact, three possible closed tra­
verses can be considered here, one original 
and two formed by the part of the original 
traverse and the new line. Had the least 
squares adjustment been used, checking 
would have been easier. 

Traverses in land surveying need not be 
adjusted by least squares, but when several 
checklines, angles, distances or combinations 
must be contended with, it might be the 
easiest solution. The least-squares method 
is not complicated (Hirvonen, 1971) if 
high-speed computer services are available. 
Furthermore, with very little extra com­
puter time, automatic checks can be pro-

Vol. 66, No. I 
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vided and the acceptability or inacceptabil­
ity of all data can be ascertained by the 
computer. In addition, these services can 
supply standard errors for all adjusted co­
ordinates, as well as compute accuracy esti­
mates for any distances and bearings com­
puted from the adjusted coordinates. When 
surveyors are called upon to be expert wit­
nesses in courts they must be able to attest 
as to the integrity of their results. Statistics 
and least-squares adjustments give data that 
can be used to convey information to a third 
party in a professional manner. 

17 
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in a triangle are linearly dependent on each 
other. Using the above formula and com­
puting the correlation coefficient it can also 
be proved. The correlation coefficient, 
which is 

<1.u 
PAa= - -

<J,<1B 

has a value equal to - 1.00. This is one of 
the extreme values of correlation coefficien ts 
and reflects a linear correlation. Similar 
formulas can be derived for the cases where 
there is one common side involved in the 
computations of the angles. 

The point should be emphasized that by 
deriving new fictiti ous observations from a 
set of real observations, no additional mean­
ingful observa tions are ohtainC'd. Through 
computations, correlations, which must be 
taken into account in furth er operations are 
introduced . The new computed quautities 
do not control the azimuth any hetter than 
the set of original ohservati ons. 

Furthermore, when some approximate 

formulas are used in a simple case like this, 
one is inviting more trouble than one can 
handle. For example, if Ingram's angles as 
a set of "adjusted" angles a re accepted, then 
which side would be taken to give a scale for 
the computations of coordinates? Each 
one's choice might be different. Why invite 
trouble when a simple method exists which 
will give the same results-the least-squares 
method. It is this writer's feeling" that a 
least-squares solution for this problem in 
hand is less time con urning than the sug­
gested method and much less confusing. 
The least-squares solution to the problem 
gives almost the same adj usted angles in this 
case, hut the results are more imperrnnal and 
the adjusted values for the distances are also 
obtained. It is urged that everyone spend 
their time slu<lying the lcast-~quares method 
which gives a con istent ~et of results and all 
types of stati ~tical quantities rather than new 
methods which will be more complicated and 
which are subject to personal interpretations. 

Are there any other cornments on this method?- Ed. 

Re: 'Useful Statistics for Land Surveyors' by Urho A. Uotila 
Published in SURVEYING AND MAPPING, Vol. XXXI ll, No. 1, March 1973, pp. 67-77 

Author Uoti1a has brought to the editorial staff's attention that several changes should he 
made in his paper as well as the inclusion of the list of reference works used to prepare it: 

- Page 67, first formula, col. 2, should read: 

a = n-1 

- Page 74, last two lines, col. I, should rend: 
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