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Probability foundations 
This article discusses confidence intervals of a random variable. Random variables draw their values from 
some underlying probability distribution, and, in this note, we’ll use the normal probability distribution. 
The normal probability distribution, or just “normal distribution” for short, is characterized by its mean 
(average) and its variance. The mean is the distribution’s most probable value. As values are observed 
from a random variable drawing its values from a normal distribution, those values will cluster around the 
mean. In theory, a normally distributed random variable can produce any value from positive infinity to 
negative infinity; however, although possible, values farther and farther away from the mean become 
more and more unlikely the farther away they are. The distribution’s variance describes the spread of the 
values. 

The totality of every possible outcome that a distribution can produce is called its population. A 
population is a theoretical concept because it is an infinite set. It’s impossible to observe every value in an 
infinite set, so we must draw samples from the population and draw inferences about the distribution from 
what we see in our samples. 

Confidence intervals 
Surveyors and engineers work to tolerances. We know that we cannot set a stake exactly at the 
coordinates stipulated in the design, and a hole in a girder cannot be drilled at exactly some location on 
the girder. The hole and the stake are considered to be in the right location if they are within some 
tolerance, plus or minus, of the design location. Confidence intervals are like this. For example, suppose a 
surveyor uses an EDM to observe slope distances between the same two stations many times with a 
different setup each time. Every observation will yield a different value for the slope distance. None of the 
observations will be the true value and, even if one of them—by some miracle—did happen to be the true 
value, we would never know it. The mean (average) of the observations is the best estimate of the true 
distance but, especially if there are very few observations, it is possible that the true distance falls outside 
the set of observations. Were this to happen, the mean would not be a good estimate of the true value: the 
set of observations must bracket the true value for the mean of the set to be representative of the true 
value. A confidence interval gives us the spread of values needed to be confident at a given level-of-
confidence that the interval contains the true mean.  

The normal distribution is ubiquitous in the statistical treatment of land-surveying measurements; 
however, since a normally distributed random variable can produce any value, this assumption is usually 
not entirely appropriate. For example, we model the observations of an electronic distance meter (EDM) 
with a normally distributed random variable, but a properly functioning EDM cannot produce wild 
readings that are very far from the true distance, much less negative readings. Properly functioning 
surveying instruments produce readings that tend to cluster rather closely to the true value, so the 
variability of the readings is small. Such readings would be modeled by a distribution whose variance is 
quite small compared to the mean, so it’s extremely unlikely to observe a negative number from a random 
variable drawing from such a distribution. As such, the normal distribution assumption usually works 
quite well, but there are exceptions. Hereafter, we use the normal distribution exclusively. 



There are random variables that produce values that are not independent, which means the prior values 
affect subsequent values. The discussion in this note assumes that all observations are independent. 

The mean 
Suppose we have a sample of n independent observations taken from a normally distributed random 
variable x. This could be, say, 𝑛𝑛 = 10 observations of slope distance given by an EDM, where the 
instrument and the target were releveled for each observation to ensure independence of observations. 
Let’s denote this as a mathematical set that we can write as 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} where each 𝑥𝑥𝑖𝑖 is an 
outcome from observing x. For the example, each 𝑥𝑥𝑖𝑖 would be an observed slope distance. The mean of X 
is 
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The mean is the best possible estimate of the true average of the probability distribution that x is drawn 
from given the information available, which is the sample set X. For surveyors, we could say that the 
mean is the best estimate of the quantity we are trying to measure, like a slope distance. The Central Limit 
Theorem establishes that, for a “large” sample size, the sample mean approaches the population mean 
with absolute certainty, with a probability equal to exactly 1. Here, “large” means that the sample mean 
approaches the population mean with absolute certainty as n becomes “infinite.” Since the sample mean is 
guaranteed to approach the true value, we can rely on the mean to be a “good” estimate if the sample set 
is “large enough”. It also means that, since we cannot make an infinite number of measurements, we 
cannot know the true slope distance. We can only make estimates of the true value.  

Since we know that the mean is not the true value, we would like to know how far the mean is from the 
true value. This, too, is not knowable exactly without an infinite number of observations. However, like 
the mean, this variability can also be estimated from the sample set X. We can estimate the amount of 
variability in x by computing the variance of the sample. The variance of a set of random samples X is 
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and the standard deviation of X is 𝑠𝑠 = √𝑠𝑠2. The 1/(𝑛𝑛 − 1) term is called Bessel’s correction, and it 
adjusts the estimate of the variance to account for sample variance’s tendency to underestimate the 
population variance when the mean is also estimated from the same data.  

A confidence interval gives us the spread of values needed to be confident at a given level-of-
confidence that the interval contains the true mean.  

Having assumed that our data are normally distributed with a certain mean and variance that we estimated 
from the sample, we can now use mathematics to determine how likely it is that observations fall within 
some certain range of that distribution. The normal distribution’s probability density function (pdf) is 
described as a “bell curve” because it is tall in the middle and flattens out way from the middle in the 
“tails.” The area under that curve between some upper and lower limits is the probability of observing a 
value from that distribution between the upper and lower limits. Conversely, we can ask what limits are 
needed to encompass some percentage of area of the density function. We can set a probability, called a 
confidence level, say, 95%, and use mathematics to determine the values that bound the area of the 
density function equal to the confidence level. As the level of confidence increases, the span widens but 



we are more confident that the interval spanned by the area contains the true mean. This interval is called 
a confidence interval. The formula for the confidence interval of a sample of n independent observations 
taken from a normally distributed random variable x is 
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where 

CI denotes two values: two because of the ± in the formula. They are the higher and lower limits of the 
confidence interval, 

𝑥̅𝑥 is the average (mean) of the samples 

t is a number called a critical value that is associated with the confidence level value that we choose. In 
practice, we would usually get t’s value from a table of degrees of freedom (to be defined later) vs. 
confidence level from Student’s t distribution. More about this below but, for now, t’s value gets larger 
and larger as we ask for higher and higher confidence levels. If the confidence level is 1, meaning that we 
insist that the confidence interval is guaranteed to include the true mean, then t will become “infinitely” 
large. This is in keeping with the notion that we need an infinite number of samples to know the true 
mean.  

s is the standard deviation of the sample 

n is the number of samples 

Here are some things to notice about the formula.  

• This is not the formula for standard deviation, so, obviously, confidence intervals are not just 
scaled standard deviations. 

• Confidence intervals include a confidence level, which standard deviations do not. 
• The confidence interval is centered around the mean, as it should be, because the mean is the best 

estimate of the true value. 
• Smaller standard deviations give tighter confidence-interval limits. This makes sense. If the data 

have a small amount of variability, then the data suggests we have better knowledge of the true 
value. 

• CI becomes tighter as n increases. The more samples we take, the more we know about the 
distribution. 

• CI gets wider as t increases. This means that, if we want to be more and more confident that the 
confidence interval contains the true mean, then we have to make the interval wider. 

Twice the standard deviation, and Student’s t distribution 
We find the t-values in a critical-value table for Student’s t distribution, or one can use statistical software 
packages that have this functionality built in. Such a table gives t values for various degrees of freedom at 
various confidence levels. The number of degrees of freedom equals 𝑛𝑛 − 1.  

It was stated above that t’s value comes from Student’s t distribution, but we’ve been assuming that x is 
normally distributed. What’s going on? Student’s t distribution is almost identical to the normal 
distribution, but its probability density function’s shape is slightly different from the equivalent (same 
mean and variance) normal distribution’s pdf to account for using a sample to estimate the distribution’s 
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mean and variance instead of using the true—but unknowable—values. We could, in practice, use a 
critical-value table for a normal distribution, and the difference would be quite small. Even though the 
difference is quite small, we use Student’s t distribution to be as formally correct as possible, especially 
because the process of finding t’s value is no more complicated using Student’s t than using a normal 
distribution.  

Here are some values for t at various confidence levels and sample sizes. At a 95% confidence level, we 
see that the t values are around 2.  

 

Summary 
This is where the notion comes from that a confidence interval is simply twice the standard deviation 
because the formula for CI contains a 𝑡𝑡 × 𝑠𝑠 term and, at a confidence level of 95%, 𝑡𝑡 ≈ 2. However, the 
term is actually 𝑡𝑡 𝑠𝑠/√𝑛𝑛. Here, n is shrinking the confidence interval to reflect the fact that having more 
samples leads to better knowledge (a tighter interval) than having fewer samples. This is not accounted 
for in the variance formula despite the presence of a 1/(𝑛𝑛 − 1) term multiplying the summation. This 
term, the Bessel correction, is there to adjust for a statistical bias, and it has nothing to do with more 
samples producing more reliable estimates. But there is more to this. 

Land surveyors usually don’t take a large number of observations as they work, so n is often less than 
five. Suppose 𝑛𝑛 = 4, then √𝑛𝑛 = √4 = 2, and dividing the sample standard deviation by 2 moves the 
upper and lower bounds of the confidence interval closer together by half the standard deviation. In this 
case, the width of the confidence interval equals the twice standard deviation (twice because 𝑡𝑡 ≈ 2), so 
the rule-of-thumb that a confidence interval is just twice standard deviation is very nearly true. There are 
scenarios when this would not be a good rule-of-thumb, such as observing a check mark many times over 
the course of a job, or using a global navigation satellite system receiver to collect two hours’ worth of 
data at 30-second epochs. As always, the surveyor should understand the theory behind the statistics they 
use to ensure that short cuts do no harm. 
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